Content for Hardware Specifications Comparison goes here.
Specification | Intel Xeon Phi 31S1P | Intel Xeon E5-2690 v2 |
---|---|---|
Socket / Bus Type | PCIe 3.0 x16 | FCLGA 2011 |
Cores | 57 | 10 |
Threads | 228 (Hyper-Threading X2) | 20 (Hyper-Threading) |
Base Clock Speed | 1.1 GHz | 2.8 GHz |
Max Turbo Speed | N/A | 3.6 GHz |
Cache | 8 MB (L2) | 25 MB (L3) |
TDP | 225 W | 135 W |
Instruction Set | ||
MMX | ✔ | ✔ |
SSE | ✔ | ✔ |
SSE2 | ✔ | ✔ |
SSE3 | ✔ | ✔ |
SSSE3 | ✔ | ✔ |
SSE4.1 | ✔ | ✔ |
SSE4.2 | ✔ | ✔ |
AVX | ✔ | ✔ |
AVX-512 | ✔ | ✖ |
AVX2 | ✖ | ✔ |
FMA | ✔ | ✔ |
Intel 64 | ✔ | ✔ |
BMI1/BMI2 | ✖ | ✔ |
CLMUL | ✖ | ✔ |
RDRAND | ✖ | ✔ |
These ISAs are common between the Intel E5 & Phi 31S1P, and I will expand on them in a bit more detail later on.
MMX (MultiMedia eXtensions) is used for multimedia tasks. It operates on 64-bit registers.
#include <mmintrin.h>
void mmx_example() {
__m64 a = _mm_set_pi32(1, 2); // Set two integers
__m64 b = _mm_set_pi32(3, 4);
__m64 result = _mm_add_pi32(a, b); // Add the two
_mm_empty(); // Clear MMX state
}
SSE (Streaming SIMD Extensions) allows for single instruction multiple data operations on 128-bit registers.
#include <xmmintrin.h>
void sse_example() {
__m128 a = _mm_set_ps(1.0f, 2.0f, 3.0f, 4.0f);
__m128 b = _mm_set_ps(5.0f, 6.0f, 7.0f, 8.0f);
__m128 result = _mm_add_ps(a, b); // Add the two
}
SSE2 extends SSE with support for double-precision floating-point and integer data types.
#include <emmintrin.h>
void sse2_example() {
__m128d a = _mm_set_pd(1.0, 2.0);
__m128d b = _mm_set_pd(3.0, 4.0);
__m128d result = _mm_add_pd(a, b); // Add the two
}
SSE3 adds new instructions for complex arithmetic and horizontal operations.
#include <pmmintrin.h>
void sse3_example() {
__m128d a = _mm_set_pd(1.0, 2.0);
__m128d b = _mm_set_pd(3.0, 4.0);
__m128d result = _mm_hadd_pd(a, b); // Horizontal add
}
SSSE3 introduces additional instructions for data manipulation.
#include <tmmintrin.h>
void ssse3_example() {
__m128i a = _mm_set_epi8(1, 2, 3, 4, 5, 6, 7, 8);
__m128i b = _mm_set_epi8(8, 7, 6, 5, 4, 3, 2, 1);
__m128i result = _mm_add_epi8(a, b); // Add packed bytes
}
SSE4.1 adds new instructions for string and integer operations.
#include <smmintrin.h>
void sse4_1_example() {
__m128i a = _mm_set_epi32(1, 2, 3, 4);
__m128i b = _mm_set_epi32(5, 6, 7, 8);
__m128i result = _mm_max_epi32(a, b); // Max of packed integers
}
SSE4.2 enhances string processing and includes new integer operations.
#include <nmmintrin.h>
void sse4_2_example() {
__m128i a = _mm_set_epi32(1, 2, 3, 4);
__m128i b = _mm_set_epi32(5, 6, 7, 8);
__m128i result = _mm_cmpestrm(a, 4, b, 4, _SIDD_CMP_EQUAL_EACH); // Compare strings
}
AVX (Advanced Vector Extensions) extends the SIMD capabilities to 256 bits.
#include <immintrin.h>
void avx_example() {
__m256 a = _mm256_set_ps(1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f);
__m256 b = _mm256_set_ps(8.0f, 7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f);
__m256 result = _mm256_add_ps(a, b); // Add the two
}
FMA (Fused Multiply-Add) allows for a single instruction to perform multiplication and addition, improving performance and precision.
#include <immintrin.h>
void fma_example() {
__m256 a = _mm256_set_ps(1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f);
__m256 b = _mm256_set_ps(8.0f, 7.0f, 6.0f, 5.0f, 4.0f, 3.0f, 2.0f, 1.0f);
__m256 c = _mm256_set1_ps(2.0f); // Set all elements to 2.0
__m256 result = _mm256_fmadd_ps(a, b, c); // result = (a * b) + c
}
Intel 64 and AMD64 are 64-bit architectures that support a wide range of instructions, including those from the previous ISAs. Here's a simple example of using 64-bit integers.
#include <cstdint>
void amd64_example() {
int64_t a = 9223372036854775807; // Max value for int64_t
int64_t b = 1;
int64_t result = a + b; // Simple addition
}
#include <immintrin.h>
#include <iostream>
void avx512_example() {
__m512i a = _mm512_set1_epi32(2); // Set all elements to 2
__m512i b = _mm512_set1_epi32(3); // Set all elements to 3
__m512i result = _mm512_add_epi32(a, b); // Add the two
int32_t* res = (int32_t*)&result;
std::cout << "AVX-512 Result: ";
for (int i = 0; i < 16; ++i) {
std::cout << res[i] << " "; // Print results
}
std::cout << std::endl;
}
#include <immintrin.h>
#include <iostream>
void avx2_example() {
__m256i a = _mm256_set1_epi32(4); // Set all elements to 4
__m256i b = _mm256_set1_epi32(5); // Set all elements to 5
__m256i result = _mm256_add_epi32(a, b); // Add the two
int32_t* res = (int32_t*)&result;
std::cout << "AVX2 Result: ";
for (int i = 0; i < 8; ++i) {
std::cout << res[i] << " "; // Print results
}
std::cout << std::endl;
}
#include <immintrin.h>
#include <iostream>
void bmi_example() {
uint32_t a = 0b1100; // Example value
uint32_t result = _blsi_u32(a); // Get the least significant set bit
std::cout << "BMI Result: " << result << std::endl;
}
#include <immintrin.h>
#include <iostream>
void clmul_example() {
uint64_t a = 0x1234567890abcdef;
uint64_t b = 0xfedcba0987654321;
uint64_t result = _mm_clmulepi64_si128(_mm_set_epi64x(a, 0), _mm_set_epi64x(b, 0), 0);
std::cout << "CLMUL Result: " << std::hex << result << std::endl;
}
#include <immintrin.h>
#include <iostream>
void rdrand_example() {
unsigned int random_value;
if (_rdrand32_step(&random_value)) {
std::cout << "RDRAND Result: " << random_value << std::endl;
} else {
std::cout << "RDRAND failed to generate a random number." << std::endl;
}
}
Content for Software Utilising Various ISAs goes here.
Software Name | Description | ISAs Utilised |
---|---|---|
FFmpeg | A multimedia framework for recording, converting, and streaming audio and video. | MMX, SSE, SSE2, AVX |
GIMP | A powerful open-source image editor that supports various image formats. | SSE, SSE2 |
Blender | A 3D graphics and animation software that supports modelling, rendering, and animation. | SSE, AVX |
OpenCV | A computer vision library that provides tools for image processing and machine learning. | SSE, AVX |
Libav | A fork of FFmpeg that provides libraries and tools for handling multimedia data. | MMX, SSE, AVX |
SciPy | A Python library used for scientific and technical computing, often leveraging optimised libraries. | SSE, AVX |
TensorFlow | An open-source machine learning framework that can utilise various ISAs for performance. | AVX, FMA |
GNU Octave | A high-level programming language primarily intended for numerical computations. | SSE, AVX |
MPlayer | A media player that supports a wide range of audio and video formats. | MMX, SSE |
Caffe | A deep learning framework that can utilise optimised libraries for performance. | AVX, FMA |
Software Name | Description | ISAs Utilised |
---|---|---|
Adobe Photoshop | A leading image editing software used for photo editing, graphic design, and digital art. | SSE, SSE2, AVX |
Microsoft Office | A suite of productivity applications including Word, Excel, and PowerPoint. | SSE, AVX |
NVIDIA CUDA Toolkit | A parallel computing platform and application programming interface model created by NVIDIA. | SSE, AVX |
Autodesk Maya | A 3D computer graphics application used for creating interactive 3D applications, including video games. | SSE, AVX |
MATLAB | A high-level programming language and interactive environment for numerical computation, visualisation, and programming. | SSE, AVX |
Unity | A cross-platform game engine used for developing video games and simulations for computers, consoles, and mobile devices. | SSE, AVX |
Final Cut Pro | A professional video editing software developed by Apple for macOS. | SSE, AVX |
CorelDRAW | A vector graphics editor used for graphic design, illustration, and layout. | SSE, AVX |
CyberLink PowerDirector | A video editing software that provides tools for creating and editing videos. | SSE, AVX |
VMware Workstation | A virtualisation software that allows users to run multiple operating systems on a single physical machine. | SSE, AVX |
Content for ISA Code Examples goes here.
Content for Applications Utilising ISAs goes here.
The integration of the Intel Xeon Phi 31S1P co-processing add-on card even though old, combined with Intel Xeon E5-2690 v2 processors already within my personal IaaS (myiaas.darrenwise.co.uk) presents a unique opportunity to leverage their distinct compute strengths combined with networking fabric to complete designing applications that effectively utilises both, all, processor compute, the augments aims are to enhance computational efficiency across various workloads which I complete.
This approach not only maximizes performance but also ensures that applications can take full advantage of the advanced instruction sets and compute available in both processors, offering a economic avenue for improved outcomes in fields such as scientific computing and machine learning just to keep it cimple for now as I'm still creating content.
You're so much better off trying the little menu which opens a modal for each containing content =D